AH-1545-CV-19-S
 M.Sc. (Final) MATHEMATICS
 Term End Examination, 2019-20
 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS

Time : Three Hours]
[Maximum Marks : 100
Note : Attempt any five questions. All questions carry equal marks.

1. State and prove Hahn decomposition theorem.
2. (a) Define Baire set and prove that every Baire set is σ-finite.
(b) Prove that the union of a sequence of outer regular sets is outer regular.
3. Show that the linear space R^{n} of all n-tuples $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ of real number is Banach space under the norm

$$
\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

4. (a) Let N be a non zero normed linear space and let $s=\{x \in N:\|x\| \leq 1\}$ be a linear subspace of N. prove that N is a Banach space if and only it S is complete.
(b) Let T be a linear transformation of a normed linear space N into another normed linear space N^{\prime} then pjrove that T is continuous if and only it T is continuous at origin.
5. (a) Let M be a closed linear subspace of a mormed linear space N and ϕ be the natural mapping of N. onto $\frac{N}{M}$ defined by $\phi(x)=x+M$ prove that ϕ is a continuous linear transformation for which $\|\phi\| \leq 1$.
(b) Let N be a normed linear space and suppose two norms $\left\|\|_{1}\right.$ and $\| \|_{2}$ are defined on

N . Then these norms are equivalent if and only if there exists positive real numbers m and M such that $m\|x\|_{1} \leq\|x\|_{2} \leq M\|x\|_{1} \quad$, for every x in N
6. State and prove closed graph theorem.
7. (a) Prove that a closed convex subset \mathbf{c} of a Hilbert space H contains a unique vector of smallest norm.
(b) Let s be a non empty subset of a Hilbert space H then S^{\perp} is a closed linear subspace of it.
8. (a) If M is a closed linear subspace of a Hilbert space H then prove that $H=M \oplus M^{\perp}$
(b) State and prove Bessel's inequality.
9. Let T be an operator on a Hilbert space H.

Then \exists a unique operator T^{*} on H such that

$$
(T x, y)=\left(x, T^{*} y\right) \quad \forall x, y \in H
$$

10. (a) If T is an operator on a Hilbert space H, then $(T x, x)=0, \forall x \in H$ if and only if $T=0$
(b) Any arbritrary operator T on a Hilbert space H can be uniquely expressed as $T=T_{1}+i T_{2} \quad$ where T_{1} and T_{2} are self adjoint operators on H.
