AH-1545-CV-19-S M.Sc. (Final) MATHEMATICS Term End Examination, 2019-20 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS

Time : Three Hours]

[Maximum Marks : 100

Note : Attempt any five questions. All questions carry equal marks.

- 1. State and prove Hahn decomposition theorem.
- 2. (a) Define Baire set and prove that every Baire set is σ finite.
 (b) Prove that the union of a sequence of outer regular sets is outer regular.
- 3. Show that the linear space \mathbb{R}^n of all n-tuples $x = (x_1, x_2, \dots, x_n)$ of real number is Banach space under the norm

$$\|x\| = (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}}$$

- 4. (a) Let N be a non zero normed linear space and let s = {x∈N: ||x|| ≤ 1 } be a linear subspace of N. prove that N is a Banach space if and only it S is complete.
 (b) Let T be a linear transformation of a normed linear space N into another normed linear space N' then pjrove that T is continuous if and only it T is continuous at origin.
 5. (a) Let M be a closed linear subspace of a mormed linear space N and φ be the
- natural mapping of N. onto $\frac{N}{M}$ defined by $\phi(x) = x + M$ prove that ϕ is a continuous linear transformation for which $\|\phi\| \le 1$.

(b) Let N be a normed linear space and suppose two norms $|||_1$ and $|||_2$ are defined on N. Then these norms are equivalent if and only if there exists positive real numbers m and M such that $m||x||_1 \le ||x||_2 \le M||x||_1$, for every x in N

- 6. State and prove closed graph theorem.
- 7. (a) Prove that a closed convex subset c of a Hilbert space H contains a unique vector of smallest norm.

(b) Let s be a non empty subset of a Hilbert space H then S^{\perp} is a closed linear subspace of it.

- 8. (a) If M is a closed linear subspace of a Hilbert space H then prove that $H = M \oplus M^{\perp}$ (b) State and prove Bessel's inequality.
- 9. Let T be an operator on a Hilbert space H.

Then \exists a unique operator T^* on H such that

 $(Tx, y) = (x, T^*y) \quad \forall x, y \in H$

10. (a) If T is an operator on a Hilbert space H, then (Tx, x) = 0, $\forall x \in H$ if and only if T = 0

(b) Any arbitrary operator T on a Hilbert space H can be uniquely expressed as $T = T_1 + iT_2$ where T_1 and T_2 are self adjoint operators on H.